翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

exploratory engineering : ウィキペディア英語版
exploratory engineering

Exploratory engineering is a term coined by K. Eric Drexler to describe the process of designing and analyzing detailed hypothetical models of systems that are not feasible with current technologies or methods, but do seem to be clearly within the bounds of what science considers to be possible within the narrowly defined scope of operation of the hypothetical system model. It usually results in paper or video prototypes, or (more likely nowadays) computer models that are as convincing as possible to those that know the relevant science, given the lack of experimental confirmation. By analogy with protoscience, it might be considered a form of protoengineering.
==Usage==

Due to the difficulty and necessity of anticipating results in such areas as genetic modification, climate change, molecular engineering, and megascale engineering, parallel fields such as bioethics, climate engineering and hypothetical molecular nanotechnology sometimes emerge to develop and examine hypotheses, define limits, and express potential solutions to the anticipated technological problems. Proponents of exploratory engineering contend that it is an appropriate initial approach to such problems.
Engineering is concerned with the design of a solution to a practical problem. A scientist may ask "why?" and proceed to research the answer to the question. By contrast, engineers want to know how to solve a problem, and how to implement that solution. Exploratory engineering often posits that a highly detailed solution exists, and explores the putative characteristics of such a solution, while holding in abeyance the question of how to implement that solution. If a point can be reached where the attempted implementation of the solution is addressed using the principles of engineering science, the activity transitions from protoengineering to actual engineering, and results in success or failure to implement the design.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「exploratory engineering」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.